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Abstract. Current solutions to integrating private data with public data have provided useful privacy metrics, such as 
relative information gain, that can be used to evaluate alternative approaches. Unfortunately, they have not addressed 
critical performance issues, especially when the public database is very large. The use of hashes and noise yields better 
performance than existing techniques, while still making it difficult for unauthorized entities to distinguish which data items 
truly exist in the private database. As we show here, the uncertainty introduced by collisions caused by hashing and the 
injection of noise can be leveraged to perform a privacy-preserving relational join operation between a massive public table 
and a relatively smaller private one.  

1 Introduction 

Data is often generated or collected by multiple parties, and the need to integrate the resulting disparate data sources has 
been identified by the research community [1-6]. Although heterogeneity of the schemas is being addressed, most data 
integration approaches have not yet efficiently addressed privacy concerns.  
Legal and social circumstances have made data privacy a significant issue [7-8], resulting in 
the need for Hippocratic databases (i.e., database that include privacy as a central concern) [9], 
particularly in sharing scientific or medical data. Without strong privacy guarantees, scientists 
often refuse to share data with others for reasons such as subject/patient confidentiality, 
proprietary/sensitive data restrictions, competition, and potential conflict and disagreement 
[10]. An application where both data sharing and privacy are important is biomedical 
research. In this domain research facilities frequently collaborate with each other, sharing 
experimental data and results. In particular, comparing genome sequences from different 
species has become an important tool for identifying functions of genes [11]. However, this 
necessitates integrating different databases. Unfortunately, while there is a significant amount 
of publicly available data, information provided by most companies, such as proprietary 
genome sequences, must be kept private.  
More concretely, imagine that a scientist wishes to perform a query across a table in his 
private database (e.g., proprietary genome sequences) and a table in a public data warehouse 
(e.g., GenBank [12]) in the most efficient manner possible (shown in Figure 1). Ignoring 
privacy restrictions, the problem is reduced to a distributed database problem that can be 
solved by shipping the scientist’s table to the warehouse and performing the join at the 
warehouse. However, if the scientist’s data set is proprietary, it cannot be sent verbatim to the 
warehouse. The naive solution is for the scientist to download the entire public table to his 
local machine and perform the query there. But to do so would be prohibitively expensive if 
the public table is very large or the communications link is limited. It would be impossible if 



 
 

 

the publicly available data cannot be duplicated, for example because of intellectual property 
constraints.  
Assuming that all data sources are abstracted as relational tables and schema reconciliation 
has already been done, the problem can be formalized as the following: table ),( BAR =  from a 
small private database db is to be joined with table ),( CBS =  from a large data warehouse dw 
on column B, yielding the desired table Goal = R? BS. Table R is private and the identity of the 
data items in R can not be known by any party other than the owner of db. Table S is publicly 
available and accessible. It is assumed that the system operates in a semi-honest model, where 
both parties will behave according to their prescribed role in any given protocol. However, 
there are no restrictions on the use of information that has been learned during the data 
exchange after the protocol is completed. Thus, from the privacy perspective, dw is treated as 
an adversary.  
Our solution to this problem augments the well-known semi-join framework [13], “hiding” 
the actual values of the join column of table R by hashing them and including additional 
artificial values. The resulting collection is sent to the data warehouse to retrieve a subset of 
table S that includes the data required to answer the original query along with some false 
positives. Although, this method will not provide for absolute privacy (i.e., the adversary can 
infer something about the contents of table R), the hash/noise method can guarantee an upper 
bound on the amount of privacy loss when data is exchanged. By sacrificing a small amount of 
privacy, this method significantly reduces transmission costs compared to techniques that 
provide absolute privacy.  

1.1 Challenges and Related Work 

There are several challenges in privacy-preserving data integration, including: defining 
privacy; correctness; and efficiency. This section provides a short summary of the most 
relevant work being done by others to meet these challenges, as well as related work on 
general approaches to privacy preservation. Following this overview, Section 2 describes our 
privacy metric; Section 3 presents our hash/noise approach; Section 4 outlines a proof of 
concept implementation and initial experimental results, and; Section 5 summarizes our work 
and explores future roads of research.  
First, a metric is needed to measure the amount of privacy loss that is incurred when data is 
exposed. In [14], variable privacy is proposed as a method in which some information can be 
revealed for some benefit. Privacy loss is likened to a communications channel, in which the 

difference 
between a priori 
(i.e., before data 
has been 
revealed) and a 
posteriori (i.e., 
after data has 
been revealed) 

distributions of information measures privacy loss. In [15], the likelihood of what can be 
inferred about a query posed by the user is used as a measure of privacy loss. In [16] and [17], 

 
Fig. 1. General problem 



 
 

 

a metric for measuring the inherent uncertainty of a random variable based on its differential 
entropy is used as a measure for privacy. These proposed metrics are related to relative 
information gain, which has also been used in many privacy-preserving applications [18], 
making it a likely candidate for measuring privacy loss.  
The second challenge is producing exact and correct answers to queries posed by users. Work 
in privacy-preserving data mining [19-22] has focused on changing the actual values of data 
items so that the values of data items are hidden but the distribution of the perturbed data is 
similar to that of the original data distribution. However, the exact original data values can not 
be accurately recovered. While this is acceptable in data mining applications, the exact 
answers are required for data integration.  
The third challenge is to perform the private join operation efficiently. It has been shown that 
to completely guarantee the privacy of the queries, the entire contents of table S should be 
downloaded [23]. However, in some cases this is not practical and an alternative solution is 
needed. If the user is willing to sacrifice a small portion of his data privacy, the join operation 
can be done without retrieving all of table S.  
Commutative encryption-based approaches have been proposed to solve the private data 
integration problem [24-26]. These approaches take advantage of a family of encryption 
functions in which the order that data item are encrypted by two different keys does not 
matter. These techniques require the exchange of both parties’ encrypted data so that they can 
both mutually encrypt each others’ data, making them very expensive. Similarly, oblivious 
transfer [27-29] allows the user to secretly pose a query and only receive the result of the 
query and nothing else, but the encryption and transmission of all data items held by dw to 
the user is required. 
There has also been work in private information retrieval schemes [23, 30], which allow a user 
to retrieve information from a database while maintaining the privacy of his query. In these 
schemes, table S would be replicated at multiple sites. Given a query, multiple queries are 
generated and sent to each of site such that no site can learn the actual original query by acting 
alone. However, users working with sensitive data would be unwilling to trust such a system 
if no guarantee of enforcement of non-collusion among the sites. 
Our hash/noise method takes an approach similar that to the one discussed in [15], which 
takes advantage of collisions caused by hashes to introduce uncertainty in the true contents of 
a private database’s table. A hash value is generated for each data item in both tables each 
time a query is posed. The size of the hash is varied to control the amount of privacy loss, so 
traditional indexing mechanisms cannot be used to accelerate querying time. A sequential 
scan of both tables involved in the join is necessary to compute the hash values of all data 
items in both tables. As a result, the join operation becomes a very expensive operation. There 
has been work in using Bloom filters to make joins in a distributed database system more 
efficient and private [31-33]. Similar to the hashing approach, however, Bloom filters would 
require a sequential scan of both tables to apply a Bloom filter to each of the data items and 
would not allow the use of traditional indexing mechanism to speed up querying.  

 In contrast, to these two approaches, our hash/noise method approach uses a set of fixed hashing and artificial hash 
values (i.e., noise) to control the amount of uncertainty in the identity of the join column values, thereby controlling the level 
of privacy loss incurred. Because the hashes are known in advance, we can store and index the resulting hash values in the 
database and would not need to recompute them for each query, enabling indexes to be used to speed up querying. Because 



 
 

 

the hash functions are known in advance, a dictionary-attack is possible but is partially alleviated by using artificial hash 
values. 
Furthermore, privacy control by hash truncation alone as suggested by [15] is very coarse. For 
example, suppose that a 16-bit hash does not satisfy a given privacy constraint, so a 15-bit 
hash was selected instead. However, the 15-bit hash doubles the collision rate of the 16-bit 
hash, doubling the size of the candidate set for the join result. In contrast, the same 16-bit hash 
with additional artificial hash values could have satisfied the same privacy constraint and 
yield fewer records in the candidate set. 

2 Privacy Metric 

For our work, we use relative information gain [34] as a basis for a metric to measure privacy loss when data is exchanged. 
Relative information gain is closely related to entropy, which is the amount of uncertainty in a random variable X. If the 
random variable X can take on a set of finite values x1,x2,…xn, then its entropy is defined as: 
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The conditional entropy H(X|Y) is the amount of uncertainty in X after Y has been observed. 
Relative information gain, or the fraction of information revealed by Y about X, is defined as: 
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Privacy loss can be thought as the amount of information gained by an adversary about the contents of set of sensitive data 
items, which in this case are the contents of column B of table R. If dw (i.e., the adversary) has no knowledge about the 
distribution of column B of table R, then it can only assume that each value that belongs to the domain of B (i.e., U) are equally 
likely to occur. Let R~  be a random variable describing the column B values (the only information revealed in a semi-join by 
db), of a tuple in table R. Absolute privacy loss pabs is defined as the relative information gain on R~  when any data set N is 
revealed to dw by db. By doing a simple substitution with equation 2, absolute privacy loss is: 
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It is possible that an adversary will make use of any available information to infer the contents 
of table R, in particular the contents of table S, since it is publicly available. Thus, relative 
privacy loss is defined as: 
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In this case, the adversary uses the distribution of values in column B of table S as a hint to the possible distribution of values 
in column B of table R. )|~( SRH  (the uncertainty of the join column values of a tuple in table R given the contents of table S) 

can be found by directly applying equation 2 on the distribution of values in column B of table S.  Because this metric 
captures the information gained by an adversary with respect to its current knowledge in contrast to absolute privacy loss, it 
is the metric we have chosen for evaluation of our approach. 

3 Privacy-Preserving Distributed Join 



 
 

 

Figure 2 outlines our approach to finding R?BS when a privacy constraint exists. The first step projects column B from table R 
and applies a hashing function h to each value in column B, yielding table h(R) with column h(B) . Step 2 generates artificial 
hash values, yielding table n. In step 3, table N is derived from the union of n and h(R) . Table N is then shipped to the data 
warehouse in step 4. At the data warehouse in step 5, table S and N are joined on column h(B) , yielding table F. Table F is a 
set of tuples from dw that contain the final result of the join operation and which is shipped to db in step 6. The final result, 
Goal, is found by filtering out the false positives in F by joining tables R and F. 

3.1 Privacy Constraint Satisfaction 

Different hash functions yield different collision rates. Hash functions with large ranges tend to yield low collision rates; 
whereas, hash functions with smaller ranges tend to yield high collision rates. A hash function h with a high collision rate 
introduces large amounts of uncertainty about x when h(x) is known. This uncertainty is used to mask the true identity of a 
join column value in table R. Hash functions also hide clusters of data by hashing clustered values to uniformly-distributed 
hashed values. A hash function with a high collision rate has the side effect of “compressing” the values of column B from 
table R since a single hash value can be used to represent multiple actual values. However, if the collision rate is too high, 
many false positives will occur in F due to the high number of collisions, yielding unnecessary transmission costs. Thus, it is 
important to use a hashing function that provides an acceptable level of performance while providing enough uncertainty to 
meet the privacy constraint.  
It is computationally expensive to dynamically compute the hash values resulting from a new 
hash function with a different size each time a query is posed on a large data warehouse table. 
Furthermore, dynamic generation of values prevents indexing mechanism from being used to 
during the join operation in step 5. Our approach is to predefine a set of m hash functions 
h1,h2,…,hm of different sizes. The result of each of these hash functions to column B on table S 
are stored explicitly (in m different columns) and indexed.  
When the user performs a join on his private table R and the public table S, the privacy loss 
incurred with respect to the contents of table S is constrained to not exceed prel. In other words: 
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Assuming a uniformly-distributing hash 
function, the number of real values that 
hash to the same hash value is estimated 

to be 
||
||

H
U , where |U| is the size of the 

domain of possible values for column B 
(the universe) and |H| is the range size 
of hash function h. H is the set of possible 
values in the range of h. For any given 

hash value, 
||
||

H
U  possible values could 

have been used as input into the hash 
function and could have belonged to 
table R. For a set of |N| hash values, 

there is a total of 
||
||

||
H
U

N  possible values 

that data items in column B of table R 
can take on with equal probability. Thus, )|~( NRH  is estimated as: 

 
Fig. 2. Privacy-preserving distributed join 
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By combining equations 5 and 6, the constraint on |N| for a given prel is found to be: 
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Applying equation 7 to each hash function, the minimum number of hash values 
|r1|,|r2|,…,|rm| for all m available hash functions on dw can be found.  
We can estimate the number of unique hash values generated by hashing each tuple in R with 
hi analogously to [15] as:  

||
||

111|)(|
||

i

R

i
esti H

H
Rh 



















−−=  (8) 

Then the actual size of the hash value set Ni that db would send to dw, if hash function hi is 
selected, is: 

)|)(|,max(|| estiii RhrN =  (9) 

Note that |Ni| = |hi (R)|, so it may be necessary to add artificial hash values to the set N sent 
by db to dw in addition to hi(R). This can be done by randomly selecting |Ni| - |hi(R)| hash 
values that belong to the range of hi. The set of artificial hash values is denoted as ni, where 
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3.2 Cost Estimation 

To select the appropriate hash function for the data exchange, the transmission cost normalized with respect to the brute-force 
method (i.e., downloading table S from dw to db) costi can be estimated. It is assumed that transmissions costs will dominate 
the execution costs of the overall join operation since the system will be operating over a limited communications link and 
search time is kept low with the use of indices. 
If the brute-force method was used, ct|S| time units are required to transmit |S| records from 
dw to db where ct is the cost associated with transmitting a single record returned by dw in 
bytes. The cost of the hash/noise method can be estimated to be the sum of the cost of 
transmitting hash values from db to dw and the cost of transmitting the set of candidate tuples 
F returned by dw to db. The cost of sending the hash values is ch|Ni| time units for a hash 
function hi, where ch is the cost associated with transmitting a single hash value. The cost of the 
tuples returned by dw to db after the hash values have been sent is ct|F|. Thus, the 
transmission cost normalized with respect to the brute-force method is summarized as: 
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Equation 10 shows that as the cost-ratio ch/ct approaches zero, the cost of sending hash values 
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ih  becomes small. In other words, as the size of the tuples returned increases the cost of 

sending the hash becomes insignificant. As |F| approaches |S|, the performance of the 
hash/noise method is similar to that of the brute-force method; whereas, when |F| << |S|, 



 
 

 

we see significant performance improvement over the brute method. While |F| is not known 
until the query has been executed, it can be estimated to be the average number of tuples 
returned by dw given the characteristics of the hash function and the contents of dw. It is found 
that on average for a given hash value, the number of values in column B that will collide to 

the some hash value is 
||
||

iH
S  for a hash 

function hi. Consequently, the average number 

of tuples returned by dw to db is ||
||
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i
N

H
S . 

Thus the normalized transmission cost costi for 
a hash function hi is estimated to be:   
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The hash function hi, with the appropriate Ni found with equation 9 that yields the lowest normalized transmission cost 
according to equation 11 is selected as the hash function for the data exchange. Clearly, if costi = 1, it would be more 
advantageous to download S since the cost of doing so is either less than or equal to the cost of our hash-noise approach 
without any loss of privacy. 

4. Implementation and Results 

A prototype of this system was implemented in Java using MySQL [35]. Borrowing a technique from [15], eight hash functions 
were created by simply truncating the result of the MD5 hash [36]. Eight sets of hash values were generated for each B column 
value by truncating the result of the MD5 hash of a column B value to various bit sizes ranging from 8 to 16 bits. The hash 
value sets were stored and indexed in dw along with their respective S table. )|~( SRH  was computed offline and stored for 

each S table. 
Three sets of data were used for three instances of table S. The first two were each comprised 
of 2.5 million synthetically generated tuples. The values of column B for table S were 
generated with a uniform distribution of values from 0 to 99,999 for the first set. The second 
set’s column B values were generated with a Gaussian distribution of values from 0 to 99,999 
with a mean of 50,000 and a standard deviation of 1000. The third set of data was the 
“alignment block in rat chain of chromosome 10” table, taken from the UCSC Genome Browser 
Project [37]. The genome data set contains approximately 2.4 million records and was biased 
towards low join column values. 
The size of the domain U for the uniformly and Gaussian-distributed join column values was 
100,000. There were approximately 123,598 different values for the join column in the genome 
data set, so the size of domain U for join column values was approximated to be 217. Unless 

  
Fig. 3. Execution times for variable |R|/|U|. Target prel 
= 0.01 and ch/ct = ½  



 
 

 

otherwise specified, the cost-ratio ch/ct was ½ (i.e., the cost of transmitting of a hash value is 
half the cost of transmitting a record from table S).  
For each experiment, the R tables were generated randomly. The R tables to be joined with a 
uniformly or a Gaussian-distributed table S were generated by randomly selecting a value for 
column B from the range of 0 to 99,999. The R tables to be joined with the genome data were 
generated by randomly selecting tuples from the “summary information about chain of rat” 
table (also available from [37]). For each data point plotted, five R tables were randomly 
generated, each of which was joined with table S 
using the hash/noise method fives times. The 
maximum and minimum observed values of each 
studied parameter were ignored, and the rest were 
averaged. Timings were taken using a dual 
processor 1.3 GHz Dell workstation.  

4.1 Performance Analysis 

In this section, we will study the performance 
implications (i.e., the size of data sets transmitted 
and execution time) of different distributions of 
the private table and different privacy 
requirements.  

4.1.1 Effect of Private Table Distributions 
To begin the execution time analysis, we study the effect of different private table 
distributions on performance by varying the size of table R in relation to the size of the set of 
possible key values U (|R|/|U|) and fixing the required relative privacy loss to not exceed 
0.01. Figure 3 shows how execution time varies as |R|/|U| changes. Figure 4 shows how the 
size of the transmitted sets |N| and |F| varies as |R|/|U| changes. For each of the 
execution time tests, the transmission cost of transmitting a hash value was equivalent to 

transmitting a 4-
byte integer, and 
the cost of 
transmitting a 
tuple from S was 
equivalent to 
transmitting two 
4-byte integers. 
For a Gaussian 
distribution and 
genome data 
distributions of 
table S, 

 
Fig. 4. Set sizes |N| and |F| for variable |R|/|U|. Target prel = 0.01 and ch/ct = ½ 

  
Fig. 5. Execution times for variable target prel. |R|/|U| = 
0.1 and ch/ct = ½ 



 
 

 

execution time increases linearly as |R|/|U| increases as do the sizes of N and F. Thus, as 
expected, the processing (i.e., transmission and computation time) of the two intermediate sets 
dominate the execution time for these two data distributions.  
For a uniform distribution of table S, the execution time behaves as a step function, 
transitioning when |R|/|U| = 0.6. Figure 4 shows that |N| increases along with the 
execution time curve; whereas, |F| remains relatively 
constant. While initially surprising, as shown in Figure 8, 
when |R|/|U| transitions from 0.6 to 0.7, the system 
experiences the largest increase in hash size |H|, 
resulting in far fewer collisions; and, consequently 
many more hash values are sent to dw to meet the 
privacy constraint. Because, the largest hash size 
increase occurs at much lower |R|/|U| values 
for the Gaussian and genome distributions, any 
sharp increases in execution times are less apparent for 
those distributions. 
Comparing the behavior of the various 
distributions, the execution time of the distributed 
join operation is directly related to the size of tables R, N, 
and F for the Gaussian data distribution and the genome data distribution. However, for a 
uniform distribution, the execution time is generally independent of |R|/|U|, except when 
there is a large transition in hash values used, because the transmission of noise and false-
positives dominate the cost. From this figure, it can also be seen that the execution times for 
join operations operating over the genome data distribution are lower than for the Gaussian 
distribution, which are usually lower than for the uniform distribution. Less uniform 
distributions will usually result in better execution times because they are more biased and 
thus will have less entropy. Uniform distributions have the most entropy of any distribution, 
requiring either far more hash values or far more false positives to be returned by dw to satisfy 
the privacy constraint. 

4.1.2 Effect of 
Privacy Requirements 
In the second set 
of execution 
time analyses, 
we will study 
performance 
implications of 
different privacy 
requirements by 
fixing |R/|U| to 
0.1 and by 

varying the maximum privacy loss, or the target relative privacy loss prel, from 0.01 to 0.96, in 
intervals of 0.05.  Figure 5 shows how execution times vary as the target prel changes. Figure 6 

 

Fig. 7. Varying absolute privacy. Target prel = 
0.01 and ch/ct = ½ 



 
 

 

shows how |N| and |F| vary as the target prel changes in the second graph. Intuitively, as the 
privacy constraint is relaxed, execution times for both the Gaussian and uniform data 
distributions decrease since fewer hash values are needed to satisfy the privacy constraint. For 
any join operation whose target prel is greater than 0.21, the execution times, |N|, and |F| 

remain constant. 
In such cases, 
|h(R)| is large 
enough to satisfy 
the privacy 
constraint 
without any 
noise. Thus, there 
is very little 
performance gain 
by increasing the 
target relative 
privacy loss 
greater than 21% 

for private tables containing only 10% of the total possible keys. 
Figure 5 also shows that the execution time of the genome data set remains relatively constant, 
with minor variations in execution times due to the randomness of data items in set R and 
consequently the high randomness of data items in set F. Furthermore, |N| remains constant 
regardless of the target privacy; and consequently, only the varying sizes of table F contribute 
to the variation in execution times, which is determined by the random selection of tuples in 
table R. This is shown in the second graph of Figure 6. The variance in execution times is more 
than that of the other distributions because the data in the genome data set is much less 
uniformly distributed than the other two distributions.  
In summary, when target prel is low, there is more variation in execution times for the Gaussian 
and uniform distributions. When the privacy constraint is relaxed, there is little or no change 
in execution times. 

4.2 Absolute Privacy Loss Analysis 

Figure 7 shows how absolute privacy loss varies  as |R| changes and the target prel is fixed at 0.01. For the uniform distribution, 
the absolute privacy loss is kept very low and close to the target prel of 0.01 since satisfying the relative privacy loss 
constraint for a uniform distribution is almost identical to satisfying an absolute privacy constraint of the same magnitude. 
However, for the Gaussian and genome data distributions, the absolute privacy loss differs greatly from the target relative prel, 
because far less effort is required to satisfy the relative privacy loss constraint than that required to satisfy an absolute 
privacy loss constraint of equal magnitude due to less uniformity in these distributions. For non-uniform distributions, 
achieving low absolute privacy loss would be much more expensive than achieving low relative absolute privacy loss; 
whereas, the cost for achieving both for a uniform distribution would be relatively the same.  
Figure 7 also shows that as |R|/|U| increases, absolute privacy loss decreases. In general, as 
|R|/|U| increases, the data revealed by db to dw increases. As a result, the pool of possible 
values that an adversary can use to infer the actual values of column B in table R increases as 
well, resulting in far greater uncertainty about the actual value of a column B value in table R. 

 
 (a) (b) 

Fig. 8. Varying normalized transmission costs with respect to the brute-force method. (a) Target 
p  = 0.01 and c /c  = ½. (b) |R|/|U| = 0.1 and c /c  = ½ 



 
 

 

4.3 Hash Selection Analysis 

In this analysis, we determined the size of the selected hash function that yields the lowest transmission cost increases as 
|R|/|U|  increases, for all distributions. We experimented with hash sizes ranging from 8 to 16 bits because any larger hash 
sizes, such as 17 bits would yield almost no collisions. It was found that as the uniformity of table S increases, a wider range of 
hash values is required to account for any variations in sizes of table R provided by a user. Depending on the size of |R|/|U| , 
for the uniform distribution, hash sizes ranging from 10-bits to 16-bits are required. For the Gaussian distribution, hash sizes 
ranging from 12-bits to 16-bits are required. Finally, for the genome data set, hash sizes ranging from 14-bits to 16-bits are 
needed.  

4.4 Transmission Cost Analysis 

In this set of analyses, the transmission costs of the hash/noise method in relation to the brute-force are studied.  
The observed normalized transmission cost based on equation 10 using the observed |F| is 
compared to the estimated normalized transmission cost based on equation 11. The first graph 
of Figure 8 shows that the hash/noise method works well when |R|/|U| is very low, and 
especially well when the distribution of key values in table S is very biased. For uniform 
distributions of table S and a target prel of 0.01, the transmission costs of the hash/noise 
method was 90% or more of the transmission costs of the brute-force method, costing as much 
as the brute-force method. For a Gaussian-distributed data set, the transmission costs ranged 
from 35% to 95% of the brute-force method, depending on |R|/|U|. For the skewed genome 
data set, the transmission cost also varied significantly depending on the size of |R|/|U|.   
The second graph shows that the transmission cost steeply decreases as the target prel increases 
from 0.01 to 0.2 for both Gaussian and uniform distributions. For any target prel greater than 
0.2, transmission costs are 25% of that of the brute-force method, for all distributions. The 
general behavior of steeply decreasing and flattening out was predicted by the estimated 
normalized transmission cost curves, but the actual transmission costs were not accurately 
estimated. For the less uniform genome data, the transmission costs remain relatively constant 
with an average of 25% of that of the brute-force 
method, for all target relative prel values and when 
|R|/|U| is 0.1. Like for the other distributions, the 
general behavior of the observed transmission cost 
curve was predicted by the estimated transmission cost 
curves, but the actual transmission costs were poorly 
predicted. 
Figure 9 compares the attained normalized 
transmission cost of the hash/noise method with the 
cost of simple semi-joins (i.e., no privacy 
constraints enforced). The graph shows that 
|R|/|U| is directly proportional to what the cost of 
the semi-join would be. The graph summarizes how 
much more the hash/noise method costs to satisfy a 
maximum relative privacy loss of 0.01 in comparison to a 
semi-join, which provides for no privacy. Using the 
hash/noise method, it is very expensive to achieve a maximum relative privacy loss of 0.01 
when the distribution of the column B values of the S table is uniform. In contrast, when the S 

 
Fig. 9. Attained normalized transmission costs of 
join with privacy constraints and join without 
privacy constraints. Target prel = 0.01 and ch/ct = 
½. Cost of transmitting the key of a record from 
db is half the cost of transmitting a tuple from dw 



 
 

 

table is non-uniform, there is much less additional cost for the added privacy that the 
hash/noise method provides. 

5. Conclusion and Future Work 

A practical solution to the private date integration problem must maintain privacy while remaining efficient. Based on the 
metric of relative information gain, we have presented an efficient approach to performing joins between a relatively small 
database and a large, public data repository. By making use of predefined hash functions and noise injection to satisfy the 
privacy constraints, traditional indexing mechanisms can be used. Thus the total cost of a distributed join is dominated by 
transmission costs rather than by search and comp utational costs.  
Based on our preliminary results, several future research directions can be pursued.  
Our current cost estimation uses the average number of collisions to estimate the number of tuples to be returned by dw, 
which works well for uniformly-distributed data but poorly for non-uniformly distributed data. In future work, additional 
features such as the distribution of table S could be incorporated into the estimate. This work can also be expanded to infinite 
domains (e.g., people’s names), specifically to develop a privacy loss metric relevant to these domains. Additionally, our 
method only protects the privacy of data over a single query; and, it may be possible for adversaries to make inferences over 
multiple queries. Perhaps, some caching can be used to avoid exposing the same private data set more than once. Finally, the 
presented hash/noise technique only works for the equijoin operation. There may be a need to develop methods to protect the 
privacy of data that are processed by general joins. 
Our promising initial results show the merit of using hashing and noise injection to solve the 
problem of efficiently integrating small amounts private data with large amounts of public 
data. In comparison to other related approaches, the hash/noise technique does not assume 
non-collusion, does not require downloading the entire data warehouse table, leverages 
existing indexing mechanisms, and provides for finer-grain control of privacy than simple 
hashing.  
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